Escape trajectories of single-beam optically trapped micro-particles in a transverse fluid flow.
نویسندگان
چکیده
We have studied the transverse and axial equilibrium positions of dielectric micro-spheres trapped in a single-beam gradient optical trap and exposed to an increasing fluid flow transverse to the trapping beam axis. It is demonstrated that the axial equilibrium position of a trapped micro-sphere is a function of its transverse position in the trapping beam. Moreover, although the applied drag-force acts perpendicularly to the beam axis, reaching a certain distance r(0) from the beam axis (r(0)/a approximately 0.6, a being the sphere radius) the particle escapes the trap due to a breaking axial equilibrium before the actual maximum transverse trapping force is reached. The comparison between a theoretical model and the measurements shows that neglecting these axial equilibrium considerations leads to a theoretical overestimation in the maximal optical transverse trapping forces of up to 50%.
منابع مشابه
An optically driven pump for microfluidics.
We demonstrate a method for generating flow within a microfluidic channel using an optically driven pump. The pump consists of two counter rotating birefringent vaterite particles trapped within a microfluidic channel and driven using optical tweezers. The transfer of spin angular momentum from a circularly polarised laser beam rotates the particles at up to 10 Hz. We show that the pump is able...
متن کاملThree-Dimensional Simulation of Airflow and Nano-Particle Beam Focusing in Aerodynamic Lenses(RESEARCH NOTE)
In this paper airflow, nano-and micro-particle motions in an aerodynamic particle beam focusing system consisting of several lenses, a nozzle and the downstream chamber, was studied. A three-dimensional numerical simulation for the system was presented and the compressible airflow and thermal conditions in the aerodynamic lens system were evaluated. Dilute particle concentration was assumed so ...
متن کاملDispersion and Deposition of Micro Particles over Two Square Obstacles in a Channel via Hybrid Lattice Boltzmann Method and Discrete Phase model
Dispersion and deposition of aerosol particles over two square cylinders confined in a channel in laminar unsteady vortical flow were investigated numerically. Lattice Boltzmann method was used to calculate fluid characteristics and modify Euler method was employed as Lagrangian particle tracing procedure to obtain particle trajectories. Drag, Saffman lift, gravity, buoyancy and Brownian motion...
متن کاملPhotodegradation of Optically Trapped Polystyrene Beads at 442 nm
Polystyrene particles of different sizes are optically trapped with a gaussian beam from a He-Cd laser operating at 442 nm. The particles are observed to exhibit luminescence after a certain trapping time followed by an escape from the optical trap. The observed luminescence is explained in terms of the photodegradation of the polystyrene backbone. It is speculated that these chemical modificat...
متن کامل'Lissajous-like' trajectories in optical tweezers.
When a microscopic particle moves through a low Reynolds number fluid, it creates a flow-field which exerts hydrodynamic forces on surrounding particles. In this work we study the 'Lissajous-like' trajectories of an optically trapped 'probe' microsphere as it is subjected to time-varying oscillatory hydrodynamic flow-fields created by a nearby moving particle (the 'actuator'). We show a breakin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 14 4 شماره
صفحات -
تاریخ انتشار 2006